
1 / 16

1 from scipy.spatial.distance import cdist

2 from numpy import sort as asort

3 from collections import Counter

2 / 16

1 data = r_[8* randn (1000 ,2)+array ([65 ,50]),

2 8*randn (1000 ,2)+array ([35 ,50])]

3 classes = array ([0]*1000+[1]*1000)

4 plot(data[:,0],data[:,1],’+’)

3 / 16

1 test_data = r_[8* randn (1000 ,2)+array ([65 ,50]),

2 8*randn (1000 ,2)+array ([35 ,50])]

3 test_classes = array ([0]*1000+[1]*1000)

4 / 16

k-Nearest Neighbor Prediction /
Error

1 def knnerr(data ,classes ,test_data ,test_classes ,k=1):

2 dists = cdist(test_data ,data)

3 nearest = argsort(dists ,axis =0)[:,:k]

4 nclasses = take(classes ,nearest ,axis =0)

5 pred = array([Counter(c).most_common (3) [0][0] for c in nclasses

])

6 return sum(pred!= test_classes)*1.0/ len(test_classes)

7

8 for k in range (1,21):

9 print k,knnerr(data ,classes ,test_data ,test_classes ,k=k)

1 0.063
2 0.0465
3 0.039
4 0.053
5 0.031
...
17 0.021
18 0.0165
19 0.014
20 0.013

6 / 16

Density Estimation and k-Nearest
Neighbor

Nearest-neighbor methods are related to non-parametric density
estimators.

The simplest non-parametric density estimator is to count the number of
samples in a volume and divide by the volume (or not divide if we don’t
care about normalization).

1 def rcounts(test_data ,data ,r):

2 dists = cdist(test_data ,data)

3 counts = sum(dists <r,axis =1)

4 return counts

8 / 16

Here is a non-parametric density estimate.

1 xs,ys = mgrid [:100 ,:100]

2 coords = c_[xs.ravel (),ys.ravel()]

3 counts = rcounts(coords ,data ,5.0).reshape (100 ,100)

4 imshow(counts.T,origin=’lower’)

(10000, 2)

9 / 16

For classification, we need to estimate P(c |x)/P(x) . We can use
non-parametric estimates for both of these.

1 posterior = (rcounts(coords ,data ,5.0)/maximum(1,rcounts(coords ,data

[classes ==1] ,5.0))).reshape (100 ,100)

2 imshow(posterior.T,origin=’lower ’)

10 / 16

The problem with estimating densities by balls is that we don’t necessarily
know the scale of the data. For density estimation, is often easier to keep
the number of neighbors we look for constant and let the volume vary.

1 def kdists(test_data ,data ,k=1):

2 dists = cdist(test_data ,data)

3 d = asort(dists ,axis =1)[:,k]

4 return d

5 def kvols(test_data ,data ,k=1):

6 assert data.shape [1]==2

7 return kdists(test_data ,data ,k=k)**2*pi

11 / 16

This also gives us a good non-parametric density estimate.

1 vols = kvols(coords ,data ,k=100).reshape (100 ,100)

2 imshow (1.0/ vols.T,origin=’lower’)

12 / 16

For 1-nearest neighbor, the result looks a little less convincing, but the
estimates still work well for classification.

1 vols = kvols(coords ,data ,k=1).reshape (100 ,100)

2 imshow (1.0/ vols.T,origin=’lower’)

13 / 16

k-nearest neighbor classification

I adaptively pick a volume by picking the k -th nearest neighbor

I within that volume, estimate the posterior probability by counting the
number of samples in each class and dividing by the total number of
samples (i.e., k)

14 / 16

1-nearest neighbor classification:

I works just like k -NN, but worth thinking about it differently too

I two class case

I posterior probability is P(c |x)

I unknown sample x ′ , nearest training set sample x

I for large enough test set P(c ′|x ′) ≈ P(c |x)

I P(c = c ′) = P(c |x)2 + (1− P(c|x))2 = 2P(c |x)2 − 2P(c |x) + 1

15 / 16

The above equation gives us a bound on the nearest neighbor classification
error in terms of the Bayes error. We can derive this bound
mathematically, or simply look at a graph. For k -nearest neighbors, there
are better bounds. This is much better than what you might suppose
given the noisy estimate from the nonparametric density estimator.

1 p = linspace (0 ,1 ,1000)

2 ylim ((0,1))

3 plot(p,2*p**2-2*p+1,linewidth =5)

4 plot(p,maximum(p,1-p)); plot(p,0.5* ones(len(p))); plot(p,1-2*p);

plot(p,-1+2*p)

16 / 16

