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Lengths and Distances in High
Dimensions



Distribution of Vector Lengths
1 for d in [2,4,8,16,32]:

2 vs = rand (100000 ,d)

3 ds = sum(vs**2,axis =1) **.5

4 plot(linspace (0 ,10 ,100),histogram(ds ,100, range =(0 ,10))[0])
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Distribution of Relative Vector Lengths
1 for d in [2,4,8,16,32]:

2 vs = rand (100000 ,d)

3 ds = sum(vs**2,axis =1) **.5

4 ds /= mean(ds)

5 plot(linspace (0,4,100),histogram(ds ,100, range =(0,4))[0])
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Distribution of Relative Vector Lengths (large dims)
1 for d in [10 ,100 ,1000]:

2 vs = rand (100000 ,d)

3 ds = sum(vs**2,axis =1) **.5

4 ds /= mean(ds)

5 plot(linspace (0,4,100),histogram(ds ,100, range =(0,4))[0])
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Pairwise Distances
1 from scipy.spatial.distance import cdist

2 for d in [10 ,100 ,1000]:

3 vs = rand (10000 ,d)

4 dists = cdist(vs ,vs)

5 for i in range(len(dists)): dists[i,i] = inf

6 md = amin(dists ,axis =1)

7 md /= mean(md)

8 plot(linspace (0,2,100),histogram(md ,100, range =(0,2))[0])
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ε-Approximate Nearest Neighbor
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Nearest Neighbor Classification and Approximate Nearest
Neighbor Algorithms

I asymptotic error bounds for k -nearest neighbor assume random
sampling

I approximate nearest neighbor algorithms do not return random
samples

I a priori, this means that asymptotic error bounds do not apply
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Instrinsic Dimension



Intrinsic Dimension

I just because a measurement is represented in d dimensions doesn’t
mean that d measurements are needed to describe it

I fewer variables may be sufficient
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1 l = rand (10000)

2 c = (l<0.5) *1

3 v = c_[cos (15*l),sin (15*l),l]
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1 from mpl_toolkits.mplot3d import Axes3D

2 gcf().add_subplot (111, projection=’3d’)

3 gca().scatter(v[:,0], v[:,1],v[:,2],c=array (["r","b"])[c],marker=’o

’,alpha =0.5)

<mpl_toolkits.mplot3d.art3d.Patch3DCollection at 0x3b16ed0>
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1 v2 = v+0.05* randn(*v.shape)

2 gcf().add_subplot (111, projection=’3d’)

3 gca().scatter(v2[:,0],v2[:,1],v2[:,2],c=array (["r","b"])[c],marker=

’o’,alpha =0.5)

<mpl_toolkits.mplot3d.art3d.Patch3DCollection at 0x4064f90>
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1 vdists = mean(asort(cdist(v,v),axis =1),axis =0)

2 n = len(vdists)

3 plot(vdists ,arange(n))
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1 v2dists = mean(asort(cdist(v2,v2),axis =1),axis =0)

2 v3 = randn (*v.shape)/2

3 v3dists = mean(asort(cdist(v3,v3),axis =1),axis =0)
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1 plot(vdists ,arange(n))

2 plot(v2dists ,arange(n))

3 plot(v3dists ,arange(n))
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At small scales, we see a linear growth in the number of neighbors for both
the noise-free dataset and the noisy intrinsically 1D dataset.

1 xlim ((0 ,0.7)); ylim ((0 ,1000))

2 plot(vdists ,arange(n))

3 plot(v2dists ,arange(n))

4 plot(v3dists ,arange(n))
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1 v3z = randn(*v.shape)*0.2

2 v3zdists = mean(asort(cdist(v3z ,v3z),axis =1),axis =0)
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Zooming into the origin, we see that for small distances, the error-free
intrinsic 1D dataset has a linear growth of the number of neighbors,
whereas the dataset disturbed with Gaussian noise grows cubically, just
like the intrinsically 3D dataset.

1 xlim ((0 ,0.2)); ylim ((0 ,300))

2 plot(vdists ,arange(n))

3 plot(v2dists ,arange(n))

4 plot(v3zdists ,arange(n))
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On a log-log plot, we can read off the intrinsic dimensionality of the data
at different scales.

1 plot(log(vdists [1:]),log(arange(1,n)))

2 plot(log(v2dists [1:]),log(arange(1,n)))

3 plot(log(v3dists [1:]),log(arange(1,n)))
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Covering dimension

There is a closely related measure of the dimension of a dataset, namely
the covering dimension.

We ask: how many ε -balls around randomly picked samples does it take
to cover the dataset, and how does this number grow with ε ?
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Determining intrinsic dimensionality

I determined the growth the average distances of the k -th nearest
neighbor

I determine, for each, ε the number of samples within range ε of each
sample

I determine the number of ε balls needed to cover the data (minimum
or random centers from the dataset)
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Linear Dimensionality Reduction



1 vs = c_[randn (100 ,1) ,0.02* randn (100 ,1) ,0.02* randn (100 ,1)]
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1 M = randrot (3)

2 vsr = dot(vs ,M.T)
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1 gcf().add_subplot (111, projection=’3d’)

2 gca().scatter(vs[:,0],vs[:,1],vs[:,2])

3 gca().scatter(vsr[:,0],vsr[:,1],vsr[:,2], color=’r’)

<mpl_toolkits.mplot3d.art3d.Patch3DCollection at 0xda34b50>
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1 e,Md = eig(dot(vsr.T,vsr))
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1 vsm = dot(vsr ,Md)

2 gcf().add_subplot (111, projection=’3d’)

3 gca().scatter(vs[:,0],vs[:,1],vs[:,2],s=3)

4 gca().scatter(vsr[:,0],vsr[:,1],vsr[:,2], color=’r’)

5 gca().scatter(vsm[:,0],vsm[:,1],vsm[:,2], color=’g’,alpha =0.5,s=80)

<mpl_toolkits.mplot3d.art3d.Patch3DCollection at 0xe9b6e90>
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1 from sklearn.decomposition import PCA

2 pca = PCA (2)

3 vp = pca.fit_transform(vsr)

4 xlim((-2,2)); ylim((-2,2))

5 scatter(vp[:,0],vp[: ,1])
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Nonlinear Dimensionality
Reduction



Metric Multidimensional Scaling

Given a set of vectors vi , find another set of corresponding vectors ui such
that the following error is minimized:

E =
∑
ij

||d(vi , vj)− d(ui , uj)||2
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Multidimensional Scaling
1 from sklearn import manifold

2 mds = manifold.MDS(2)

3 vl = mds.fit_transform(v[::50])

4 scatter(vl[:,0],vl[:,1],c=array (["r","b"])[c[::50]])

Thomas Breuel (UniKL) Distances and Neighbors in High Dimensions 34 / 41



Locally Linear Embedding

I find nearest neighbors for each point

I represent each point as a linear combination of its neighbors

I find a low-dimensional embedding such that each point is still given
by approximately the same linear combination of its neighbors
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Locally Linear Embedding

1 mds = manifold.LocallyLinearEmbedding ()

2 vl = mds.fit_transform(v[::50])

3 scatter(vl[:,0],vl[:,1],c=array (["r","b"])[c[::50]])
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Isomap

I compute k -nearest neighbor graph

I take pair-wise distances between nearby points

I use graph algorithm to find distances to faraway points

I use classic MDS to compute a low dimensional representation
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Isomap

1 mds = manifold.Isomap ()

2 vl = mds.fit_transform(v[::50])

3 scatter(vl[:,0],vl[:,1],c=array (["r","b"])[c[::50]])
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Isomap

1 mds = manifold.Isomap(n_neighbors =2)

2 vl = mds.fit_transform(v[::50])

3 scatter(vl[:,0],vl[:,1],c=array (["r","b"])[c[::50]])
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Nearest Neighbor Methods and
Low-Dimensional Structures



Nearest neighbor methods generally depend only on “the” intrinsic
dimension of data, not the dimension of the space that the data is
embedded in.

“The” intrinsic dimension depends on scale:

I at a small scale, there is usually high dimensional noise

I at an intermediate scale, data often has low intrinsic dimension

I at a large scale, the intrinsic dimension gets high again
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