
Distances and Neighbors in High Dimensions

Thomas Breuel

UniKL

Thomas Breuel (UniKL) Distances and Neighbors in High Dimensions 1 / 41

Lengths and Distances in High
Dimensions

Distribution of Vector Lengths
1 for d in [2,4,8,16,32]:

2 vs = rand (100000 ,d)

3 ds = sum(vs**2,axis =1) **.5

4 plot(linspace (0 ,10 ,100),histogram(ds ,100, range =(0 ,10))[0])

Thomas Breuel (UniKL) Distances and Neighbors in High Dimensions 3 / 41

Distribution of Relative Vector Lengths
1 for d in [2,4,8,16,32]:

2 vs = rand (100000 ,d)

3 ds = sum(vs**2,axis =1) **.5

4 ds /= mean(ds)

5 plot(linspace (0,4,100),histogram(ds ,100, range =(0,4))[0])

Thomas Breuel (UniKL) Distances and Neighbors in High Dimensions 4 / 41

Distribution of Relative Vector Lengths (large dims)
1 for d in [10 ,100 ,1000]:

2 vs = rand (100000 ,d)

3 ds = sum(vs**2,axis =1) **.5

4 ds /= mean(ds)

5 plot(linspace (0,4,100),histogram(ds ,100, range =(0,4))[0])

Thomas Breuel (UniKL) Distances and Neighbors in High Dimensions 5 / 41

Pairwise Distances
1 from scipy.spatial.distance import cdist

2 for d in [10 ,100 ,1000]:

3 vs = rand (10000 ,d)

4 dists = cdist(vs ,vs)

5 for i in range(len(dists)): dists[i,i] = inf

6 md = amin(dists ,axis =1)

7 md /= mean(md)

8 plot(linspace (0,2,100),histogram(md ,100, range =(0,2))[0])

Thomas Breuel (UniKL) Distances and Neighbors in High Dimensions 6 / 41

ε-Approximate Nearest Neighbor

Thomas Breuel (UniKL) Distances and Neighbors in High Dimensions 8 / 41

Thomas Breuel (UniKL) Distances and Neighbors in High Dimensions 9 / 41

Nearest Neighbor Classification and Approximate Nearest
Neighbor Algorithms

I asymptotic error bounds for k -nearest neighbor assume random
sampling

I approximate nearest neighbor algorithms do not return random
samples

I a priori, this means that asymptotic error bounds do not apply

Thomas Breuel (UniKL) Distances and Neighbors in High Dimensions 10 / 41

Instrinsic Dimension

Intrinsic Dimension

I just because a measurement is represented in d dimensions doesn’t
mean that d measurements are needed to describe it

I fewer variables may be sufficient

Thomas Breuel (UniKL) Distances and Neighbors in High Dimensions 12 / 41

1 l = rand (10000)

2 c = (l<0.5) *1

3 v = c_[cos (15*l),sin (15*l),l]

Thomas Breuel (UniKL) Distances and Neighbors in High Dimensions 13 / 41

1 from mpl_toolkits.mplot3d import Axes3D

2 gcf().add_subplot (111, projection=’3d’)

3 gca().scatter(v[:,0], v[:,1],v[:,2],c=array (["r","b"])[c],marker=’o

’,alpha =0.5)

<mpl_toolkits.mplot3d.art3d.Patch3DCollection at 0x3b16ed0>

Thomas Breuel (UniKL) Distances and Neighbors in High Dimensions 14 / 41

1 v2 = v+0.05* randn(*v.shape)

2 gcf().add_subplot (111, projection=’3d’)

3 gca().scatter(v2[:,0],v2[:,1],v2[:,2],c=array (["r","b"])[c],marker=

’o’,alpha =0.5)

<mpl_toolkits.mplot3d.art3d.Patch3DCollection at 0x4064f90>

Thomas Breuel (UniKL) Distances and Neighbors in High Dimensions 15 / 41

1 vdists = mean(asort(cdist(v,v),axis =1),axis =0)

2 n = len(vdists)

3 plot(vdists ,arange(n))

Thomas Breuel (UniKL) Distances and Neighbors in High Dimensions 16 / 41

1 v2dists = mean(asort(cdist(v2,v2),axis =1),axis =0)

2 v3 = randn (*v.shape)/2

3 v3dists = mean(asort(cdist(v3,v3),axis =1),axis =0)

Thomas Breuel (UniKL) Distances and Neighbors in High Dimensions 17 / 41

1 plot(vdists ,arange(n))

2 plot(v2dists ,arange(n))

3 plot(v3dists ,arange(n))

Thomas Breuel (UniKL) Distances and Neighbors in High Dimensions 18 / 41

At small scales, we see a linear growth in the number of neighbors for both
the noise-free dataset and the noisy intrinsically 1D dataset.

1 xlim ((0 ,0.7)); ylim ((0 ,1000))

2 plot(vdists ,arange(n))

3 plot(v2dists ,arange(n))

4 plot(v3dists ,arange(n))

Thomas Breuel (UniKL) Distances and Neighbors in High Dimensions 19 / 41

1 v3z = randn(*v.shape)*0.2

2 v3zdists = mean(asort(cdist(v3z ,v3z),axis =1),axis =0)

Thomas Breuel (UniKL) Distances and Neighbors in High Dimensions 20 / 41

Zooming into the origin, we see that for small distances, the error-free
intrinsic 1D dataset has a linear growth of the number of neighbors,
whereas the dataset disturbed with Gaussian noise grows cubically, just
like the intrinsically 3D dataset.

1 xlim ((0 ,0.2)); ylim ((0 ,300))

2 plot(vdists ,arange(n))

3 plot(v2dists ,arange(n))

4 plot(v3zdists ,arange(n))

Thomas Breuel (UniKL) Distances and Neighbors in High Dimensions 21 / 41

On a log-log plot, we can read off the intrinsic dimensionality of the data
at different scales.

1 plot(log(vdists [1:]),log(arange(1,n)))

2 plot(log(v2dists [1:]),log(arange(1,n)))

3 plot(log(v3dists [1:]),log(arange(1,n)))

Thomas Breuel (UniKL) Distances and Neighbors in High Dimensions 22 / 41

Covering dimension

There is a closely related measure of the dimension of a dataset, namely
the covering dimension.

We ask: how many ε -balls around randomly picked samples does it take
to cover the dataset, and how does this number grow with ε ?

Thomas Breuel (UniKL) Distances and Neighbors in High Dimensions 23 / 41

Determining intrinsic dimensionality

I determined the growth the average distances of the k -th nearest
neighbor

I determine, for each, ε the number of samples within range ε of each
sample

I determine the number of ε balls needed to cover the data (minimum
or random centers from the dataset)

Thomas Breuel (UniKL) Distances and Neighbors in High Dimensions 24 / 41

Linear Dimensionality Reduction

1 vs = c_[randn (100 ,1) ,0.02* randn (100 ,1) ,0.02* randn (100 ,1)]

Thomas Breuel (UniKL) Distances and Neighbors in High Dimensions 26 / 41

1 M = randrot (3)

2 vsr = dot(vs ,M.T)

Thomas Breuel (UniKL) Distances and Neighbors in High Dimensions 27 / 41

1 gcf().add_subplot (111, projection=’3d’)

2 gca().scatter(vs[:,0],vs[:,1],vs[:,2])

3 gca().scatter(vsr[:,0],vsr[:,1],vsr[:,2], color=’r’)

<mpl_toolkits.mplot3d.art3d.Patch3DCollection at 0xda34b50>

Thomas Breuel (UniKL) Distances and Neighbors in High Dimensions 28 / 41

1 e,Md = eig(dot(vsr.T,vsr))

Thomas Breuel (UniKL) Distances and Neighbors in High Dimensions 29 / 41

1 vsm = dot(vsr ,Md)

2 gcf().add_subplot (111, projection=’3d’)

3 gca().scatter(vs[:,0],vs[:,1],vs[:,2],s=3)

4 gca().scatter(vsr[:,0],vsr[:,1],vsr[:,2], color=’r’)

5 gca().scatter(vsm[:,0],vsm[:,1],vsm[:,2], color=’g’,alpha =0.5,s=80)

<mpl_toolkits.mplot3d.art3d.Patch3DCollection at 0xe9b6e90>

Thomas Breuel (UniKL) Distances and Neighbors in High Dimensions 30 / 41

1 from sklearn.decomposition import PCA

2 pca = PCA (2)

3 vp = pca.fit_transform(vsr)

4 xlim((-2,2)); ylim((-2,2))

5 scatter(vp[:,0],vp[: ,1])

Thomas Breuel (UniKL) Distances and Neighbors in High Dimensions 31 / 41

Nonlinear Dimensionality
Reduction

Metric Multidimensional Scaling

Given a set of vectors vi , find another set of corresponding vectors ui such
that the following error is minimized:

E =
∑
ij

||d(vi , vj)− d(ui , uj)||2

Thomas Breuel (UniKL) Distances and Neighbors in High Dimensions 33 / 41

Multidimensional Scaling
1 from sklearn import manifold

2 mds = manifold.MDS(2)

3 vl = mds.fit_transform(v[::50])

4 scatter(vl[:,0],vl[:,1],c=array (["r","b"])[c[::50]])

Thomas Breuel (UniKL) Distances and Neighbors in High Dimensions 34 / 41

Locally Linear Embedding

I find nearest neighbors for each point

I represent each point as a linear combination of its neighbors

I find a low-dimensional embedding such that each point is still given
by approximately the same linear combination of its neighbors

Thomas Breuel (UniKL) Distances and Neighbors in High Dimensions 35 / 41

Locally Linear Embedding

1 mds = manifold.LocallyLinearEmbedding ()

2 vl = mds.fit_transform(v[::50])

3 scatter(vl[:,0],vl[:,1],c=array (["r","b"])[c[::50]])

Thomas Breuel (UniKL) Distances and Neighbors in High Dimensions 36 / 41

Isomap

I compute k -nearest neighbor graph

I take pair-wise distances between nearby points

I use graph algorithm to find distances to faraway points

I use classic MDS to compute a low dimensional representation

Thomas Breuel (UniKL) Distances and Neighbors in High Dimensions 37 / 41

Isomap

1 mds = manifold.Isomap ()

2 vl = mds.fit_transform(v[::50])

3 scatter(vl[:,0],vl[:,1],c=array (["r","b"])[c[::50]])

Thomas Breuel (UniKL) Distances and Neighbors in High Dimensions 38 / 41

Isomap

1 mds = manifold.Isomap(n_neighbors =2)

2 vl = mds.fit_transform(v[::50])

3 scatter(vl[:,0],vl[:,1],c=array (["r","b"])[c[::50]])

Thomas Breuel (UniKL) Distances and Neighbors in High Dimensions 39 / 41

Nearest Neighbor Methods and
Low-Dimensional Structures

Nearest neighbor methods generally depend only on “the” intrinsic
dimension of data, not the dimension of the space that the data is
embedded in.

“The” intrinsic dimension depends on scale:

I at a small scale, there is usually high dimensional noise

I at an intermediate scale, data often has low intrinsic dimension

I at a large scale, the intrinsic dimension gets high again

Thomas Breuel (UniKL) Distances and Neighbors in High Dimensions 41 / 41

